TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll D
X [ESTADO QUÂNTICO]
xTODA E QUALQUER FORMA DE FUNÇÃO E EQUAÇÃO EM:
Na matemática, um passeio aleatório de tempo contínuo (PATC) é uma generalização de um passeio aleatório em que a partícula errante espera por um tempo aleatório entre os saltos.[1] É um processo de salto estocástico com distribuições arbitrárias de comprimentos de salto e tempos de parada.[2] De forma mais generalizada, pode ser visto como um caso especial de um processo de renovação de Markov.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Na matemática, um passeio aleatório de tempo contínuo (PATC) é uma generalização de um passeio aleatório em que a partícula errante espera por um tempo aleatório entre os saltos.[1] É um processo de salto estocástico com distribuições arbitrárias de comprimentos de salto e tempos de parada.[2] De forma mais generalizada, pode ser visto como um caso especial de um processo de renovação de Markov.
Motivação
O PATC foi introduzido pelos matemáticos norte-americanos Elliott Waters Montroll e George Herbert Weiss em 1965 como uma generalização do processo de difusão física para descrever efetivamente a difusão anômala, isto é, os casos superdifusivo e subdifusivo.[3] Uma formulação equivalente do PATC é dada por equações mestre generalizadas.[4] Uma conexão entre PATCs e equações de difusão com derivadas de tempo fracionárias foi estabelecida. De forma semelhante, equações de difusão fracionárias de tempo-espaço podem ser consideradas PATCs com saltos continuamente distribuídos ou aproximações em continuidade de PATCs em reticulados.
O PATC foi introduzido pelos matemáticos norte-americanos Elliott Waters Montroll e George Herbert Weiss em 1965 como uma generalização do processo de difusão física para descrever efetivamente a difusão anômala, isto é, os casos superdifusivo e subdifusivo.[3] Uma formulação equivalente do PATC é dada por equações mestre generalizadas.[4] Uma conexão entre PATCs e equações de difusão com derivadas de tempo fracionárias foi estabelecida. De forma semelhante, equações de difusão fracionárias de tempo-espaço podem ser consideradas PATCs com saltos continuamente distribuídos ou aproximações em continuidade de PATCs em reticulados.
Formulação
Uma formulação simples de um PATC consiste em considerar o processo estocástico definido por:
X
Uma formulação simples de um PATC consiste em considerar o processo estocástico definido por:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
cujos incrementos são variáveis aleatórias independentes e identicamente distribuídas que assumem valores em um domínio , sendo o número de saltos no intervalo . A probabilidade de que o processo assuma o valor no tempo é dada por:
X
cujos incrementos são variáveis aleatórias independentes e identicamente distribuídas que assumem valores em um domínio , sendo o número de saltos no intervalo . A probabilidade de que o processo assuma o valor no tempo é dada por:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Aqui, é a probabilidade que o processo assuma o valor depois de saltos e é a probabilidade de ter saltos depois do tempo .[5]
Aqui, é a probabilidade que o processo assuma o valor depois de saltos e é a probabilidade de ter saltos depois do tempo .[5]
Fórmula de Montroll–Weiss
Denotamos por o tempo de espera entre dois saltos de e por sua distribuição. A transformada de Laplace de é definida por:
X
Denotamos por o tempo de espera entre dois saltos de e por sua distribuição. A transformada de Laplace de é definida por:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
De forma semelhante, a função característica da distribuição de saltos é dada por sua transformada de Fourier:
X
De forma semelhante, a função característica da distribuição de saltos é dada por sua transformada de Fourier:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Pode-se mostrar que a transformada de Laplace–Fourier da probabilidade é dada por:
X
Pode-se mostrar que a transformada de Laplace–Fourier da probabilidade é dada por:
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Esta é a chamada fórmula de Montroll–Weiss.[6]
Em matemática, o processo de Wiener é um processo estocástico de tempo contínuo, que recebe este nome em homenagem a Norbert Wiener. É frequentemente chamado de processo de movimento browniano padrão ou movimento browniano devido a sua conexão histórica com o processo físico conhecido como movimento browniano primeiramente observado por Robert Brown. Foi também estudado por Albert Einstein.[1] É um dos mais conhecidos processos de Lévy (processos estocásticos càdlàg com incrementos independentes estacionários) e ocorre frequentemente em matemática pura e aplicada, economia, matemática financeira e física.
O processo de Wiener desempenha um papel importante tanto na matemática pura, quanto na aplicada. Em matemática pura, o processo de Wiener fez surgir o estudo de martingales de tempo contínuo. É um processo-chave em cujos termos processos estocásticos mais complicados podem ser descritos, em especial, por ser um dos únicos processos que é, ao mesmo tempo, martingale e markoviano. Como tal, desempenha um papel vital no cálculo estocástico, nos processos de difusão e, até mesmo, na teoria do potencial. É o processo condutor da evolução de Schramm-Loewner. Em matemática aplicada, o processo de Wiener é usado para representar a integral de um processo gaussiano de ruído branco, que é útil no que se refere a modelos de ruído na engenharia eletrônica (veja ruído browniano), erros de instrumento em teoria da filtragem e forças desconhecidas em teoria de controle.[2]
O processo de Wiener tem aplicações por todas as ciências matemáticas. Em física, é usado para estudar o movimento browniano, a difusão de partículas mínimas suspensas em fluido, e outros tipos de difusão via equações de Langevin e Fokker-Planck. Também constitui a base da formação de integrais de caminho da mecânica quântica[3] (pela fórmula de Feynman-Kac, uma solução à equação de Schrödinger que pode ser representada nos termos do processo de Wiener) e do estudo da inflação eterna na cosmologia física. Também é proeminente na teoria matemática das finanças, em particular no modelo Black-Scholes de precificação de opções.
Esta é a chamada fórmula de Montroll–Weiss.[6]
Em matemática, o processo de Wiener é um processo estocástico de tempo contínuo, que recebe este nome em homenagem a Norbert Wiener. É frequentemente chamado de processo de movimento browniano padrão ou movimento browniano devido a sua conexão histórica com o processo físico conhecido como movimento browniano primeiramente observado por Robert Brown. Foi também estudado por Albert Einstein.[1] É um dos mais conhecidos processos de Lévy (processos estocásticos càdlàg com incrementos independentes estacionários) e ocorre frequentemente em matemática pura e aplicada, economia, matemática financeira e física.
O processo de Wiener desempenha um papel importante tanto na matemática pura, quanto na aplicada. Em matemática pura, o processo de Wiener fez surgir o estudo de martingales de tempo contínuo. É um processo-chave em cujos termos processos estocásticos mais complicados podem ser descritos, em especial, por ser um dos únicos processos que é, ao mesmo tempo, martingale e markoviano. Como tal, desempenha um papel vital no cálculo estocástico, nos processos de difusão e, até mesmo, na teoria do potencial. É o processo condutor da evolução de Schramm-Loewner. Em matemática aplicada, o processo de Wiener é usado para representar a integral de um processo gaussiano de ruído branco, que é útil no que se refere a modelos de ruído na engenharia eletrônica (veja ruído browniano), erros de instrumento em teoria da filtragem e forças desconhecidas em teoria de controle.[2]
O processo de Wiener tem aplicações por todas as ciências matemáticas. Em física, é usado para estudar o movimento browniano, a difusão de partículas mínimas suspensas em fluido, e outros tipos de difusão via equações de Langevin e Fokker-Planck. Também constitui a base da formação de integrais de caminho da mecânica quântica[3] (pela fórmula de Feynman-Kac, uma solução à equação de Schrödinger que pode ser representada nos termos do processo de Wiener) e do estudo da inflação eterna na cosmologia física. Também é proeminente na teoria matemática das finanças, em particular no modelo Black-Scholes de precificação de opções.
Caracterizações do processo de Wiener
é caracterizado pelas seguintes propriedades:- q.c.
- tem incrementos independentes: para todo , os incrementos futuros , , são independentes dos valores passados , .
- tem incrementos gaussianos: é normalmente distribuído com média e variância ,
- tem caminhos contínuos: com probabilidade , é contínuo em .
Por incrementos independentes, diz-se que, se , então e são variáveis aleatórias independentes e a mesma condição se mantém para incrementos.
Uma caracterização alternativa do processo de Wiener é a então chamada caracterização de Lévy, que diz que o processo de Wiener é um martingale quase certamente contínuo com e variação quadrática (o que significa que é também um martingale).
Uma terceira caracterização diz que o processo de Wiener tem um representação espectral como uma série de senos cujos coeficientes são variáveis aleatórias independentes . Esta representação pode ser obtida usando o teorema de Karhunen-Loève.
Outra caracterização de um processo de Wiener é a integral definida (de ao tempo ) de um processo gaussiano ("branco") delta-correlacionado com variância e média .
O processo de Wiener pode ser construído como o limite escalar de um passeio aleatório ou outros processos estocásticos de tempo discreto com incrementos independentes estacionários. Isto é conhecido como teorema de Donsker. Assim como o passeio aleatório, o processo de Wiener é recorrente em uma ou duas dimensões (o que significa que ele retorna quase certamente a qualquer vizinhança fixada da origem infinitas vezes), mas não é recorrente em três ou mais dimensões. Diferentemente do passeio aleatório, tem como característica a invariância de escala, o que significa que
é um processo de Wiener para qualquer constante não nula. A medida de Wiener é a lei probabilística no espaço das funções contínuas , com , induzido pelo processo de Wiener. Uma integral baseada na medida de Wiener pode ser chamada de integral de Wiener.
- q.c.
- tem incrementos independentes: para todo , os incrementos futuros , , são independentes dos valores passados , .
- tem incrementos gaussianos: é normalmente distribuído com média e variância ,
- tem caminhos contínuos: com probabilidade , é contínuo em .
Por incrementos independentes, diz-se que, se , então e são variáveis aleatórias independentes e a mesma condição se mantém para incrementos.
Uma caracterização alternativa do processo de Wiener é a então chamada caracterização de Lévy, que diz que o processo de Wiener é um martingale quase certamente contínuo com e variação quadrática (o que significa que é também um martingale).
Uma terceira caracterização diz que o processo de Wiener tem um representação espectral como uma série de senos cujos coeficientes são variáveis aleatórias independentes . Esta representação pode ser obtida usando o teorema de Karhunen-Loève.
Outra caracterização de um processo de Wiener é a integral definida (de ao tempo ) de um processo gaussiano ("branco") delta-correlacionado com variância e média .
O processo de Wiener pode ser construído como o limite escalar de um passeio aleatório ou outros processos estocásticos de tempo discreto com incrementos independentes estacionários. Isto é conhecido como teorema de Donsker. Assim como o passeio aleatório, o processo de Wiener é recorrente em uma ou duas dimensões (o que significa que ele retorna quase certamente a qualquer vizinhança fixada da origem infinitas vezes), mas não é recorrente em três ou mais dimensões. Diferentemente do passeio aleatório, tem como característica a invariância de escala, o que significa que
é um processo de Wiener para qualquer constante não nula. A medida de Wiener é a lei probabilística no espaço das funções contínuas , com , induzido pelo processo de Wiener. Uma integral baseada na medida de Wiener pode ser chamada de integral de Wiener.
Processo de Wiener como um limite do passeio aleatório
Considere variáveis aleatórias independentes e identicamente distribuídas com média e variância . Para cada , defina um processo estocástico de tempo contínuo
- X
Considere variáveis aleatórias independentes e identicamente distribuídas com média e variância . Para cada , defina um processo estocástico de tempo contínuo
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Esta é uma função passo aleatório. Incrementos de são independentes porque são independentes. Para grande, é próximo de pelo teorema central do limite. Conforme , se aproximará de um processo de Wiener. A prova desta afirmação é oferecida pelo teorema de Donsker. Esta formulação explicou por que o movimento browniano é ubíquo.[6]
Esta é uma função passo aleatório. Incrementos de são independentes porque são independentes. Para grande, é próximo de pelo teorema central do limite. Conforme , se aproximará de um processo de Wiener. A prova desta afirmação é oferecida pelo teorema de Donsker. Esta formulação explicou por que o movimento browniano é ubíquo.[6]
Propriedades de um processo de Wiener unidimensional
Propriedades básicas
A função densidade de probabilidade incondicional, que segue distribuição normal com média igual a e variância igual a , em um tempo fixado :
- X
A função densidade de probabilidade incondicional, que segue distribuição normal com média igual a e variância igual a , em um tempo fixado :
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Covariância e correlação
A covariância e a correlação:
- X
A covariância e a correlação:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
- X
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Os resultados para o valor esperado e a variância seguem imediatamente da definição de que os incrementos têm uma distribuição normal, centrada em zero. Assim
- X
Os resultados para o valor esperado e a variância seguem imediatamente da definição de que os incrementos têm uma distribuição normal, centrada em zero. Assim
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Os resultados para a covariância e a correlação seguem da definição de que incrementos não sobrepostos são independentes, da qual apenas a propriedade de que eles não são correlacionados é usada. Suponha que .
- X
Os resultados para a covariância e a correlação seguem da definição de que incrementos não sobrepostos são independentes, da qual apenas a propriedade de que eles não são correlacionados é usada. Suponha que .
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Substituindo
Chegamos em:
Já que e são independentes,
Assim
- X
Substituindo
Chegamos em:
Já que e são independentes,
Assim
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Representação de Wiener
Wiener (1923) também deu uma representação de um caminho browniano em termos de uma série aleatória de Fourier. Se são variáveis gaussianas independentes com média e variância , então
- X
Wiener (1923) também deu uma representação de um caminho browniano em termos de uma série aleatória de Fourier. Se são variáveis gaussianas independentes com média e variância , então
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e
- X
e
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
representa um movimento browniano em . O processo escalado
- X
representa um movimento browniano em . O processo escalado
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é um movimento browniano em (vide teorema de Karhunen-Loève).
é um movimento browniano em (vide teorema de Karhunen-Loève).
Máximo corrente
A distribuição conjunta do máximo corrente
e é
Para obter a distribuição incondicional de , integra-se ao longo de :
E o valor esperado[7]
Se em o processo de Wiener tem um valor conhecido , é possível calcular a distribuição de probabilidade condicional do máximo no intervalo (vide a distribuição de probabilidade de pontos extremos de um processo estocástico de Wiener).
A distribuição conjunta do máximo corrente
e é
Para obter a distribuição incondicional de , integra-se ao longo de :
E o valor esperado[7]
Se em o processo de Wiener tem um valor conhecido , é possível calcular a distribuição de probabilidade condicional do máximo no intervalo (vide a distribuição de probabilidade de pontos extremos de um processo estocástico de Wiener).
Autossemelhança
Escalamento browniano
Para todo , o processo é outro processo de Wiener.
Para todo , o processo é outro processo de Wiener.
Reversão de tempo
O processo para é distribuído como para .
O processo para é distribuído como para .
Inversão de tempo
O processo é outro processo de Wiener.
O processo é outro processo de Wiener.
Uma classe de martingales brownianos
Se uma função polinomial satisfaz a equação diferencial parcial
então o processo estocástico
é um martingale.
Exemplo: é um martingale, que mostra que a variação quadrática de em é igual a . Segue-se que o tempo de primeira saída esperado de de é igual a .
Mais geralmente, para toda função polinomial , o seguinte processo estocástico é um martingale:
em que é a função polinomial
Exemplo: o processo
é um martingale, que mostra que a variação quadrática do martingale on [0, t] é igual a
Se uma função polinomial satisfaz a equação diferencial parcial
então o processo estocástico
é um martingale.
Exemplo: é um martingale, que mostra que a variação quadrática de em é igual a . Segue-se que o tempo de primeira saída esperado de de é igual a .
Mais geralmente, para toda função polinomial , o seguinte processo estocástico é um martingale:
em que é a função polinomial
Exemplo: o processo
é um martingale, que mostra que a variação quadrática do martingale on [0, t] é igual a
Algumas propriedades de caminhos amostrais
O conjunto de todas as funções com estes propriedades é composto inteiramente por medidas de Wiener. Isto é, um caminho (função amostral) do processo de Wiener tem todas estas propriedades quase certamente.
O conjunto de todas as funções com estes propriedades é composto inteiramente por medidas de Wiener. Isto é, um caminho (função amostral) do processo de Wiener tem todas estas propriedades quase certamente.
Propriedades qualitativas
- Para todo , a função assume tanto valores (estritamente) positivos, como (estritamente) negativos em .
- A função é contínua em todo lugar, mas diferenciável em lugar nenhum (assim como a função de Weierstrass).
- Pontos do máximo local da função são um conjunto contável denso; os valores máximos são diferentes por pares; cada máximo local é agudo na seguinte acepção: se tem um máximo local em , então
- O mesmo se aplica a mínimos locais.
- A função não tem nenhum ponto de crescimento local, isto é, nenhum satisfaz as seguintes condições para algum em : em primeiro lugar, para todo em , e em segundo lugar, para todo em . O crescimento local é uma condição mais fraca do que aquela referente ao crescimento de em . O mesmo se aplica ao decrescimento local.
- A função é de variação limitada em todo intervalo.
- A variação quadrática de ao longo de é .
- Os zeros da função são um conjunto perfeito denso em lugar nenhum com medida de Lebesgue 0 e dimensão de Hausdorff (portanto, incontável).
- Para todo , a função assume tanto valores (estritamente) positivos, como (estritamente) negativos em .
- A função é contínua em todo lugar, mas diferenciável em lugar nenhum (assim como a função de Weierstrass).
- Pontos do máximo local da função são um conjunto contável denso; os valores máximos são diferentes por pares; cada máximo local é agudo na seguinte acepção: se tem um máximo local em , então
- O mesmo se aplica a mínimos locais.
- A função não tem nenhum ponto de crescimento local, isto é, nenhum satisfaz as seguintes condições para algum em : em primeiro lugar, para todo em , e em segundo lugar, para todo em . O crescimento local é uma condição mais fraca do que aquela referente ao crescimento de em . O mesmo se aplica ao decrescimento local.
- A função é de variação limitada em todo intervalo.
- A variação quadrática de ao longo de é .
- Os zeros da função são um conjunto perfeito denso em lugar nenhum com medida de Lebesgue 0 e dimensão de Hausdorff (portanto, incontável).
Propriedades quantitativas
Lei do logaritmo iterado
Módulo de continuidade
Módulo local de continuidade:
Módulo global de continuidade (Lévy):
Módulo local de continuidade:
Módulo global de continuidade (Lévy):
Tempo local
A imagem da medida de Lebesgue em sob o mapa (a medida imagem) tem uma densidade . Assim,
para uma ampla classe de funções (nomeadamente, todas as funções contínuas, todas as funções localmente integráveis, todas as funções não negativas mensuráveis). A densidade é (mais exatamente, pode ser e será escolhida como) contínua. O número é chamado de tempo local em de ao longo de . É estritamente positiva para todo do intervalo , em que e são o menor e o maior valor de em , respectivamente. Para fora deste intervalo, o tempo local evidentemente desaparece. Tratado como uma função de duas variáveis e , o tempo local é ainda contínuo. Tratado como uma função de (em que está fixado), o tempo local é uma função singular correspondente à medida não atômica sobre o conjunto de zeros de .
Estas propriedades de continuidade são razoavelmente não triviais. Considere que o tempo local também possa ser definido (como a densidade da medida imagem) para uma função suave. Por consequência, entretanto, a densidade é descontínua, a não ser que a função dada seja monótona. Em outras palavras, há um conflito entre o bom comportamento de uma função e o bom comportamento de seu tempo local. Neste sentido, a continuidade do tempo local para o processo de Wiener é outra manifestação da não suavidade da trajetória
A imagem da medida de Lebesgue em sob o mapa (a medida imagem) tem uma densidade . Assim,
para uma ampla classe de funções (nomeadamente, todas as funções contínuas, todas as funções localmente integráveis, todas as funções não negativas mensuráveis). A densidade é (mais exatamente, pode ser e será escolhida como) contínua. O número é chamado de tempo local em de ao longo de . É estritamente positiva para todo do intervalo , em que e são o menor e o maior valor de em , respectivamente. Para fora deste intervalo, o tempo local evidentemente desaparece. Tratado como uma função de duas variáveis e , o tempo local é ainda contínuo. Tratado como uma função de (em que está fixado), o tempo local é uma função singular correspondente à medida não atômica sobre o conjunto de zeros de .
Estas propriedades de continuidade são razoavelmente não triviais. Considere que o tempo local também possa ser definido (como a densidade da medida imagem) para uma função suave. Por consequência, entretanto, a densidade é descontínua, a não ser que a função dada seja monótona. Em outras palavras, há um conflito entre o bom comportamento de uma função e o bom comportamento de seu tempo local. Neste sentido, a continuidade do tempo local para o processo de Wiener é outra manifestação da não suavidade da trajetória
Processos relacionados
O processo estocástico definido por
é chamado de processo de Wiener com deriva e variância infinitesimal . Estes processos representam todos os processos de Lévy contínuos.
Dois processos aleatórios no intervalo de tempo aparecem, grosso modo, quando se condiciona o processo de Wiener a desaparecer nos dois extremos de . Quando não se condiciona mais, o processo assume tanto valores positivos, como negativos em e é chamado de ponte browniana. Condicionado a permanecer positivo em , o processo é chamado de excursão browniana.[8] Em ambos os casos, um tratamento rigoroso envolve um procedimento limitante, já que a fórmula não se aplica quando .
Um movimento browniano geométrico pode ser escrito como
É um processo estocástico usado para modelar processos que nunca podem assumir valores negativos, tais como os valores de ações.
O processo estocástico
é distribuído como o processo de Ornstein-Uhlenbeck.
O tempo de chegada a um único ponto pelo processo de Wiener é uma variável aleatória com distribuição de Lévy. A família destas variáveis aleatórias (indexadas por todos os números positivos ) é uma modificação contínua à esquerda do processo de Lévy. A modificação contínua à direita deste processo é dada pelos tempos de primeira saída a partir de intervalos fechados .
O tempo local de um movimento browniano descreve o tempo que o processo passa no ponto . Formalmente,
em que é a função delta de Dirac. O comportamento do tempo local é caracterizado pelos teoremas de Ray-Knight.
O processo estocástico definido por
é chamado de processo de Wiener com deriva e variância infinitesimal . Estes processos representam todos os processos de Lévy contínuos.
Dois processos aleatórios no intervalo de tempo aparecem, grosso modo, quando se condiciona o processo de Wiener a desaparecer nos dois extremos de . Quando não se condiciona mais, o processo assume tanto valores positivos, como negativos em e é chamado de ponte browniana. Condicionado a permanecer positivo em , o processo é chamado de excursão browniana.[8] Em ambos os casos, um tratamento rigoroso envolve um procedimento limitante, já que a fórmula não se aplica quando .
Um movimento browniano geométrico pode ser escrito como
É um processo estocástico usado para modelar processos que nunca podem assumir valores negativos, tais como os valores de ações.
O processo estocástico
é distribuído como o processo de Ornstein-Uhlenbeck.
O tempo de chegada a um único ponto pelo processo de Wiener é uma variável aleatória com distribuição de Lévy. A família destas variáveis aleatórias (indexadas por todos os números positivos ) é uma modificação contínua à esquerda do processo de Lévy. A modificação contínua à direita deste processo é dada pelos tempos de primeira saída a partir de intervalos fechados .
O tempo local de um movimento browniano descreve o tempo que o processo passa no ponto . Formalmente,
em que é a função delta de Dirac. O comportamento do tempo local é caracterizado pelos teoremas de Ray-Knight.
Martingales brownianos
Considere um evento relacionado ao processo de Wiener (mais formalmente, um conjunto, mensurável no que se refere à medida de Wiener, no espaço de funções), e a probabilidade condicional de dado o processo de Wiener no intervalo de tempo (mais formalmente, a medida de Wiener do conjunto de trajetórias cuja concatenação com a trajetória parcial dada em pertence a ). Então, o processo é um martingale contínuo. Sua propriedade martingale deriva imediatamente das definições, mas sua continuidade é um fato muito especial – um caso especial de um teorema geral que afirma que todos os martingales brownianos são contínuos. Um martingale browniano é, por definição, um martingale adaptado à filtração browniana, sendo esta, por definição, a filtração gerada pelo processo de Wiener.
Considere um evento relacionado ao processo de Wiener (mais formalmente, um conjunto, mensurável no que se refere à medida de Wiener, no espaço de funções), e a probabilidade condicional de dado o processo de Wiener no intervalo de tempo (mais formalmente, a medida de Wiener do conjunto de trajetórias cuja concatenação com a trajetória parcial dada em pertence a ). Então, o processo é um martingale contínuo. Sua propriedade martingale deriva imediatamente das definições, mas sua continuidade é um fato muito especial – um caso especial de um teorema geral que afirma que todos os martingales brownianos são contínuos. Um martingale browniano é, por definição, um martingale adaptado à filtração browniana, sendo esta, por definição, a filtração gerada pelo processo de Wiener.
Movimento browniano integrado
A integral do tempo do processo de Wiener
é chamada de movimento browniano integrado ou processo de Wiener integrado. Aparece em muitas aplicações e pode-se mostrar por cálculo que tem distribuição , usando o fato de que a covariância do processo de Wiener é .[9]
A integral do tempo do processo de Wiener
é chamada de movimento browniano integrado ou processo de Wiener integrado. Aparece em muitas aplicações e pode-se mostrar por cálculo que tem distribuição , usando o fato de que a covariância do processo de Wiener é .[9]
Mudança de tempo
Todo martingale contínuo (a partir da origem) é um processo de Wiener com tempo mudado.
Exemplo: , em que é outro processo de Wiener (diferente de , mas distribuído como ).
Exemplo: , em que e é outro processo de Wiener.
Geralmente, se for um martingale contínuo, então , em que é a variação quadrática de em e é um processo de Wiener.
Corolário: Considere um martingale contínuo e
Então, apenas os dois casos seguintes são possíveis:
outros casos (tais como , etc.) são de probabilidade .
Especialmente, um martingale contínuo não negativo tem um limite finito (como ) quase certamente.
Tudo o que foi afirmado nesta subseção sobre martingales também se aplica a martingales locais.
Todo martingale contínuo (a partir da origem) é um processo de Wiener com tempo mudado.
Exemplo: , em que é outro processo de Wiener (diferente de , mas distribuído como ).
Exemplo: , em que e é outro processo de Wiener.
Geralmente, se for um martingale contínuo, então , em que é a variação quadrática de em e é um processo de Wiener.
Corolário: Considere um martingale contínuo e
Então, apenas os dois casos seguintes são possíveis:
outros casos (tais como , etc.) são de probabilidade .
Especialmente, um martingale contínuo não negativo tem um limite finito (como ) quase certamente.
Tudo o que foi afirmado nesta subseção sobre martingales também se aplica a martingales locais.
Mudança de medida
Uma classe ampla de semimartingales contínuos (especialmente, de processos de difusão) está relacionada ao processo de Wiener por meio de uma combinação de mudança de tempo e mudança de medida.
Usando este fato, as propriedades qualitativas afirmadas acima para o processo de Wiener podem ser generalizadas para uma classe ampla de semimartingales contínuos.[10][11]
Uma classe ampla de semimartingales contínuos (especialmente, de processos de difusão) está relacionada ao processo de Wiener por meio de uma combinação de mudança de tempo e mudança de medida.
Usando este fato, as propriedades qualitativas afirmadas acima para o processo de Wiener podem ser generalizadas para uma classe ampla de semimartingales contínuos.[10][11]
Processo de Wiener de valores complexos
O processo de Wiener de valores complexos pode ser definido como um processo aleatório de valores complexos da forma em que são processos de Wiener independentes (de valores reais).[12]
O processo de Wiener de valores complexos pode ser definido como um processo aleatório de valores complexos da forma em que são processos de Wiener independentes (de valores reais).[12]
Autossemelhança
O escalamento browniano, a reversão de tempo e a inversão de tempo são iguais aos do caso com valores reais.
Quanto à invariância de rotação, para cada número complexo tal que , o processo é outro processo de Wiener de valores complexos
O escalamento browniano, a reversão de tempo e a inversão de tempo são iguais aos do caso com valores reais.
Quanto à invariância de rotação, para cada número complexo tal que , o processo é outro processo de Wiener de valores complexos
Mudança de tempo
Se for uma função inteira, então, o processo é um processo de Wiener de valores complexos com mudança de tempo.
Exemplo: em que
e é outro processo de Wiener de valores complexos.
Em contraste com o caso de valores reais, um martingale de valores complexos geralmente não é um processo de Wiener de valores complexos com mudança de tempo. Por exemplo, o martingale 2Xt + iYt não é (aqui são processos de Wiener independentes, assim como antes).
Se for uma função inteira, então, o processo é um processo de Wiener de valores complexos com mudança de tempo.
Exemplo: em que
e é outro processo de Wiener de valores complexos.
Em contraste com o caso de valores reais, um martingale de valores complexos geralmente não é um processo de Wiener de valores complexos com mudança de tempo. Por exemplo, o martingale 2Xt + iYt não é (aqui são processos de Wiener independentes, assim como antes).